

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

The Simulation of Multicomponent Sorption Processes with Axial Diffusion

Awad R. Mansour^a

^a CHEMICAL ENGINEERING DEPARTMENT JORDAN UNIVERSITY OF SCIENCE & TECHNOLOGY, IRBID, JORDAN

To cite this Article Mansour, Awad R.(1989) 'The Simulation of Multicomponent Sorption Processes with Axial Diffusion', Separation Science and Technology, 24: 12, 1047 – 1058

To link to this Article: DOI: 10.1080/01496398908049888

URL: <http://dx.doi.org/10.1080/01496398908049888>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The Simulation of Multicomponent Sorption Processes with Axial Diffusion

AWAD R. MANSOUR

CHEMICAL ENGINEERING DEPARTMENT
JORDAN UNIVERSITY OF SCIENCE & TECHNOLOGY
IRBID, JORDAN

Abstract

A generalized complex model has been developed to numerically simulate multicomponent adsorption kinetics of binary and ternary systems. The model takes into account fluid resistance, internal and external diffusion resistances with axial diffusion, and a highly nonlinear equilibrium isotherm. Excellent agreement with previously published experimental data with and without axial diffusion has been obtained. The general computer program developed in this study can be accurately used for any number of components in any complex multicomponent sorption studies.

INTRODUCTION

Multicomponent adsorption onto activated carbon is finding increasing application in the purification treatment of domestic and industrial water and wastewater. The prediction of the breadth and shape of breakthrough curves is of fundamental importance in the engineering design of fixed-bed adsorption systems. For the design of efficient adsorbers it is desirable to have a background of theory in order to know how various factors influence the sharpness of separation. Among these factors is axial dispersion, which plays an important role in many processes of chemical reaction and separation. The effect of axial dispersion on the performance of liquid-phase adsorption and other

mass transfer processes has been extensively investigated for many years (1-32). Most investigators (1) ignored the dispersion effect in their theoretical works and in the analysis of experimental results. Other researchers (16, 18, 20) showed that neglecting dispersion effects may cause considerable errors in the evaluation of transfer coefficients at low flow rates, particularly when the fluid is a gas.

In the present work a comprehensive mathematical model considering all the significant external and internal diffusion and mass transfer processes as well as the axial dispersion using a highly nonlinear equilibrium isotherm is numerically solved for binary and ternary systems and compared to previously published experimental and theoretical works.

MATHEMATICAL GENERAL MODEL

The mathematical model describing solutes distribution consists of three parts as follows: 1) sorbent phase, 2) liquid-stream phase, 3) equilibrium isotherms.

Sorbent-Phase Governing Equations

For any solute i the pore and surface concentrations are described by Eqs. (1) and (2) respectively:

$$\varepsilon_p D_{pi} \frac{1}{\partial r} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_{pi}}{\partial r} \right) - K_{li}(C_{si}^* - C_{si}) = \varepsilon_p \frac{\partial C_{pi}}{\partial r} \quad (1)$$

$$D_{si} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_{si}}{\partial r} \right) + K_{li}(C_{si}^* - C_{si}) = \frac{\partial C_{si}}{\partial t} \quad (2)$$

for $i = 1, 2, 3, \dots, n$, where n is the number of solutes. (The symbols are defined in the Symbols section.) The initial and boundary conditions needed for Eqs. (1) and (2) are:

$$\text{at } t = 0, C_{pi} = C_{si} = 0 \text{ for all } 0 < r < R$$

$$\text{at } r = 0, \frac{\partial C_{si}}{\partial r} = 0 \text{ and } \frac{\partial C_{pi}}{\partial r} = 0 \text{ for any } t > 0$$

$$\text{at } r = R, \varepsilon_p D_{pi} \frac{\partial C_{pi}}{\partial r} = K_{fi}(C_{di} - C_{pi})$$

and

$$\partial C_{si}/\partial r = 0 \text{ for any } t > 0$$

where C_{di} is the concentration of solute in the bulk fluid.

Liquid-Stream Phase Governing Equations

The concentration distribution of solute i in the liquid stream flowing inside the fixed-bed is described by the following partial differential equation:

$$\frac{\partial C_{di}}{\partial t} + \left(\frac{1 - \varepsilon_B}{\varepsilon_B} \right) \left(\frac{3K_{fi}}{R} \right) (C_{di} - C_{pi})_{r=R} + \frac{V \partial C_{di}}{\varepsilon_B \partial x} = D_{Li} \frac{\partial^2 C_{di}}{\partial x^2} \quad (3)$$

The initial and boundary conditions of Eq. (3) are given by

$$C_{di}(t, x) = 0 \text{ at } t < 0 \text{ for } 0 \leq x \leq z$$

$$\frac{V}{\varepsilon_B} C_{0i}(t) = \frac{V}{\varepsilon_B} C_{di}(t, x) - D_{Li} \frac{\partial C_{di}}{\partial x} \text{ at } x = 0, t > 0$$

$$\frac{\partial C_{di}}{\partial x} = 0 \text{ at } x = z, t > 0$$

Equilibrium Isotherms

For each solute i , the general nonlinear equilibrium isotherm is described by the following equation (34):

$$C_{si}^* = \frac{a_{i0} C_{pi}^{b_{i0}}}{c_i + \sum_{j=1}^n a_{ij} C_{pj}^{b_{ij}}} = f_i(C_{p1}, C_{p2}, \dots, C_{pn}) \quad (4)$$

The Langmuir and Freundlich and other known isotherms are special cases of Eq. (4). This equation has been shown (8, 9) to satisfactorily fit experimental data of two and three solute systems.

Equation (4) is used to couple Eqs. (1) and (2) for each solute i through the term $K_{1i}(C_{si}^* - C_{si})$.

Since $C_s^* = f(C_{p1}, C_{p2}, \dots, C_{pn})$, sorbent- and liquid-phase equations are linked together through the term $(C_{di} - C_{pi})_{r=R}$ applied at the outer surface of the sorbent particles.

NUMERICAL SOLUTION

An accurate stable scheme of backward-difference technique (35, 36) has been successfully used (1) to solve the Eqs. (1)–(4) and is extended here to include the axial diffusion term on the right-hand side of Eq. (3). Details of the numerical solution are described elsewhere (2). The general flow chart describing the algorithmic logic of the computer program of the complex model is shown in Fig. 1.

RESULTS AND DISCUSSIONS

The purpose of this paper is to present a numerical solution of a generalized multicomponent adsorption model and to study the effect of axial diffusion on the performance of fixed-bed adsorbers.

Results for the Two-Component System

The values of parameters for this system were also experimentally used by Balzli (9) where butanol is taken as Component 1, and *t*-amyl alcohol as Component 2. These values are given in Table 1.

As shown in Fig. 2, our findings indicate that axial dispersion does not contribute significantly to the shapes of the breakthrough curves for the two-component system. These results are in agreement with those obtained by many investigators in recent works (12, 15, 20, 22, 26).

For $z \gg$ particle diameter and $Pe > 1$, and $Re \geq 10$, it has been shown (15, 22) that axial dispersion is unlikely to be significant, since the axial diffusive term in the mass balance equation (Eq. 3) is much less than the convective term. Farkas and Byleveld (15) found by experiment that axial dispersion is insignificant even when $Re < 10$ and Re is in the range of 0.02 to 0.22. In the present work, the values of Re and Pe are, respectively, about 2 to 0.3. Moreover, the findings of Farkas and Byleveld (15) and Wilson (12) indicate that axial dispersion does not contribute significantly to the shapes of the breakthrough curves.

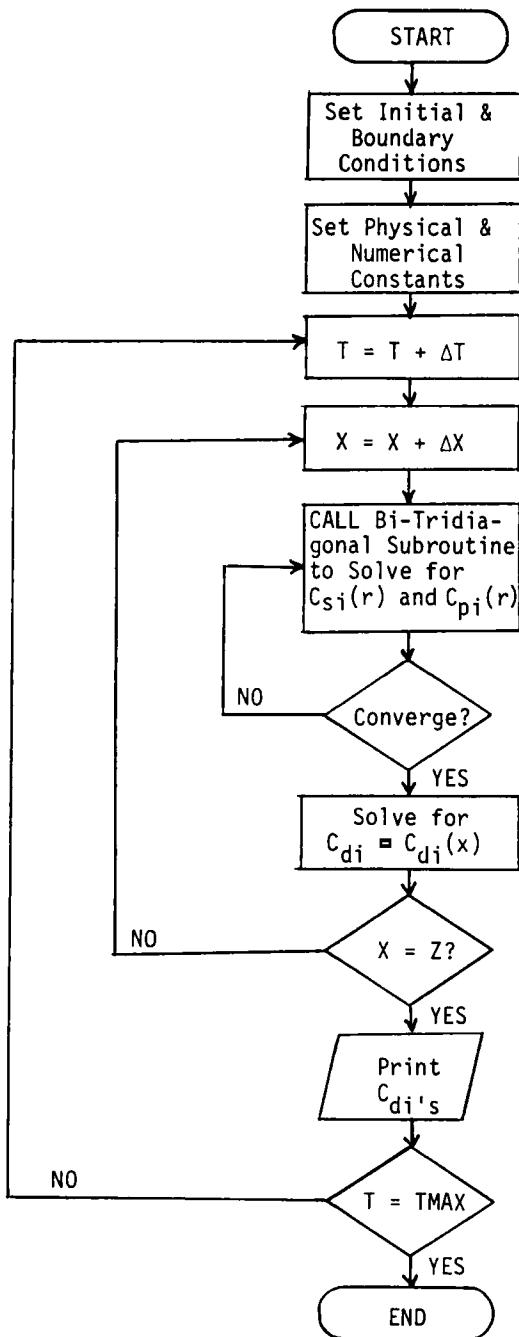


FIG. 1. Flow chart for complex model.

TABLE 1
Values of Binary System Parameters

Height of adsorber, z , cm	41.0		
Radius of carbon particle, R , cm	0.05		
Porosity of particles, ϵ_p , fraction	0.94		
Voidage of bed, ϵ_B , fraction	0.45		
Bulk velocity, V , cm/s	0.139		
Initial concentration, C_{0i} , g/cm ³ :			
Component 1	0.001		
Component 2	0.001015		
Mass transfer coefficient, K_{fi} , cm/s:			
Component 1	2.115×10^{-3}		
Component 2	1.68×10^{-3}		
Adsorption rate constant, K_{li} , s ⁻¹ :			
Component 1	5.333×10^{-4}		
Component 2	4.917×10^{-4}		
Pore diffusion coefficient, D_{pi} , cm ² /s:			
Component 1	7.40×10^{-6}		
Component 2	13.03×10^{-6}		
Surface diffusion coefficient, D_{si} , cm ² /s:			
Component 1	1.25×10^{-7}		
Component 2	2.2×10^{-7}		
Axial diffusion coefficient, D_{Li} , cm ² /s:			
Component 1	0.04		
Component 2	0.04		
Equilibrium parameters for Component 1:			
$a_{10} = 1.06$	$b_{10} = 1.217$	$c_1 = 0$	
$a_{11} = 1$	$b_{12} = 0.626$	$b_{11} = 0.812$	$b_{12} = 0.764$
Equilibrium parameters for Component 2:			
$a_{20} = 1.07$	$b_{20} = 1.254$	$c_2 = 0$	
$a_{21} = 1$	$a_{22} = 0.045$	$b_{21} = 0.906$	$b_{22} = .634$

From Fig. 2, for a 41-cm adsorber, it is noted that the results with axial diffusion is a little bit closer to the experimental data than the results without axial diffusion. This difference in results is not noted in the longer adsorber (82 cm) as shown in Fig. 4 for the ternary system.

Results for the Three-Component System

The parameters used in this model are shown in Table 2. Phenol is used here as Component 3.

As shown in Figs. 3 and 4 for the three-component system in both 41 and 82 cm adsorbers, it is noted that including axial diffusion in the

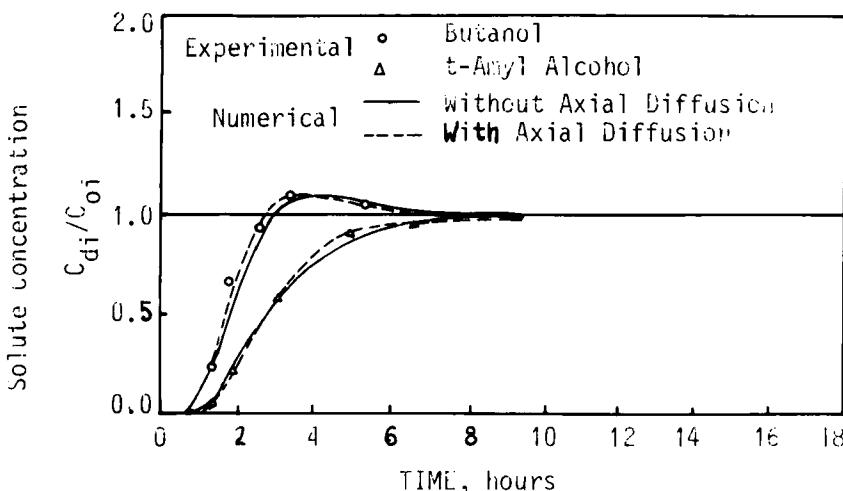


FIG. 2. Effect of axial diffusion on the simultaneous adsorption of butanol and *t*-amyl alcohol.

complex model does not affect the shape of the breakthrough curves for all components. It is also noted that the effect of axial diffusion is less for the longer adsorber, and this result has been reported in a recent paper by Raghavan and Ruthven (17), who showed that the effect of axial diffusion is minimal except when the bed is very short (less than 20 particle diameters), and in our study this ratio is 820. Therefore the neglect of axial dispersion is reasonable for long adsorbers.

CONCLUSIONS

It is concluded that axial dispersion has a minimal effect on the shape and sharpness of breakthrough curves in multicomponent sorption processes, and this effect becomes less for relatively long fixed-bed adsorbers. Hence, axial dispersion can be neglected in the simulation and the design of multicomponent adsorbers.

SYMBOLS

a_{i0}, a_{ij} coefficients in Eq. (4)
 b_{i0}, b_{ij} coefficients in Eq. (4)

TABLE 2
Values of Parameters for the Ternary System

Height of adsorbers, z , cm:	41.0, 82.0			
Initial concentration, C_0 , g/cm ³ :				
Component 1, C_{01}	9.150×10^{-4}			
Component 2, C_{02}	9.120×10^{-4}			
Component 3, C_{03}	9.970×10^{-4}			
Mass transfer coefficients, K_{fi} , cm/s:				
Component 1, K_{f1}	2.120×10^{-3}			
Component 2, K_{f2}	1.950×10^{-3}			
Component 3, K_{f3}	2.170×10^{-3}			
Adsorption rate constants, K_{li} , s ⁻¹ :				
Component 1	5.333×10^{-4}			
Component 2	4.917×10^{-4}			
Component 3	3.278×10^{-4}			
Pore diffusion coefficient, D_{pi} , cm ² /s:				
Component 1	7.4×10^{-6}			
Component 2	13.03×10^{-6}			
Component 3	19.2×10^{-6}			
Surface diffusion coefficient, D_{si} , cm ² /s:				
Component 1	1.25×10^{-7}			
Component 2	2.20×10^{-7}			
Component 3	3.20×10^{-7}			
Axial diffusion coefficient, D_{Lj} , cm ² /s:				
Component 1	0.04			
Component 2	0.04			
Component 3	0.04			
Parameters of the equilibrium isotherm:				
$a_{10} = 1.05$	$a_{11} = 1.00$	$a_{12} = 1.44$	$a_{13} = 0.53$	$c_1 = 0$
$b_{10} = 1.134$	$b_{11} = 0.73$	$b_{12} = 0.793$	$b_{13} = 0.467$	
$a_{20} = 1.09$	$a_{21} = 0.52$	$a_{22} = 1.00$	$a_{23} = 0.30$	$c_2 = 0$
$b_{20} = 1.182$	$b_{21} = 0.884$	$b_{22} = 0.831$	$b_{23} = 0.536$	
$a_{30} = 0.79$	$a_{31} = 1.07$	$a_{32} = 0.79$	$a_{33} = 1.00$	$c_3 = 0$
$b_{30} = 0.224$	$b_{31} = 0.286$	$b_{32} = 0.235$	$b_{33} = 0.002$	

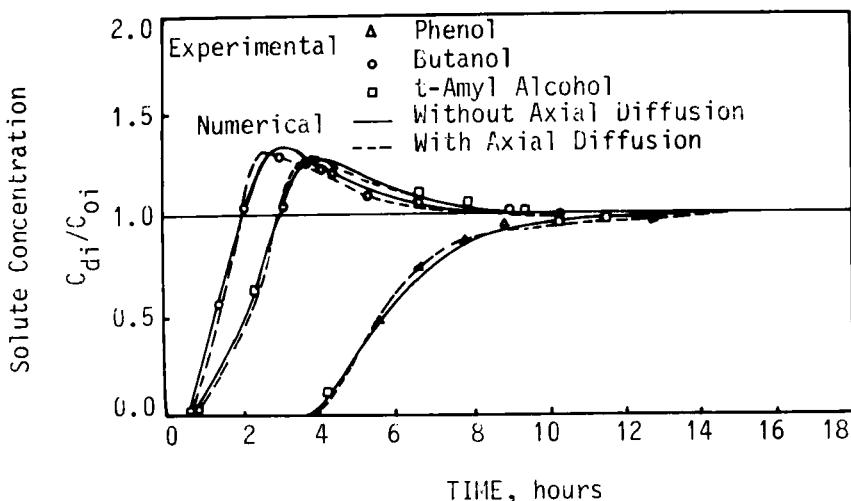


FIG. 3. Effect of axial diffusion on the simultaneous adsorption of butanol, *t*-amyl alcohol, and phenol in a 41-cm bed.

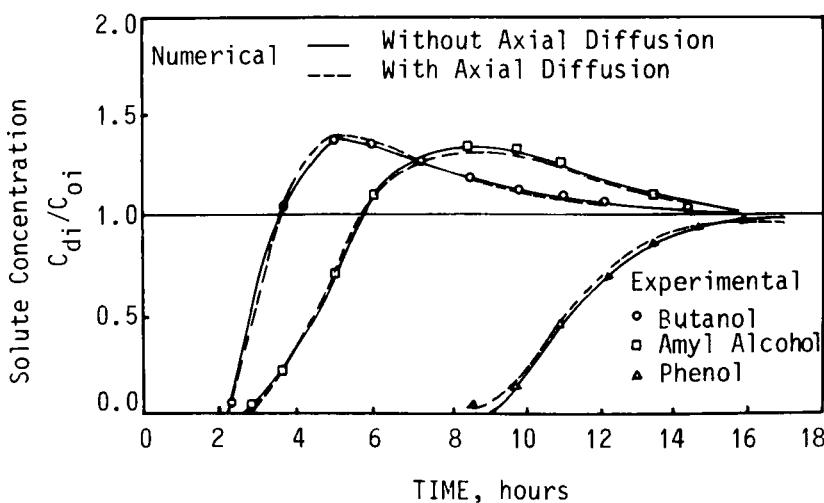


FIG. 4. Effect of axial diffusion on the simultaneous adsorption of butanol, *t*-amyl alcohol, and phenol in a 82-cm bed.

C_{di}	concentration of solute i in fluid phase of the bed (g/cm 3)
C_{0i}	value of C_{di} at the entrance of bed
C_{pi}	concentration of solute i in pore fluid phase (g/cm 3)
C_{si}	concentration of solute i in solid phase (g/cm 3)
D_{Li}	axial diffusion coefficient of solute i (cm 2 /s)
D_{pi}	pore diffusion coefficient of solute i (cm 2 /s)
d_p	particle diameter (cm)
D_{si}	surface diffusion coefficient of solute i (cm 2 /s)
K_{fi}	mass transfer coefficient of solute i (cm/s)
K_{li}	adsorption rate constant of solute i (s $^{-1}$)
Pe	Peclet number = $d_p V/D_L$ (dimensionless)
r	radial distance in particle (cm)
R	particle radius (cm)
Re	Reynolds number = $\rho V d_p / \mu$
t	time (s)
V	fluid velocity (cm/s)
X	distance along adsorber (cm)
Z	length of adsorber (cm)

Greek Letters

ρ	fluid density (g/cm 3)
μ	fluid viscosity (g/cm \cdot s)
ϵ_B	bed void fraction (dimensionless)
ϵ_p	particle porosity (dimensionless)

Superscripts

*	equilibrium value
---	-------------------

Subscripts

i	integer value
j	integer value
p	pore
s	solid

REFERENCES

1. A. R. Mansour, D. U. Von Rosenberg, and N. D. Sylvester, "Numerical Solution of Liquid-Phase Multicomponent Adsorption in Fixed Bed," *AIChE J.*, 28(5), 765 (1982).
2. A. R. Mansour, *Effect of Axial Diffusion on the Performance of Multicomponent Fixed-Bed Adsorbers*, Unpublished Report, Yarmouk University, Jordan, 1987.
3. A. R. Mansour, A. B. Shahalam, and N. Darwish, "A Comprehensive Study of Parameters Influencing the Performance of Multicomponent Adsorption in Fixed Beds," *Sep. Sci. Technol.*, 19(13-15), 1087 (1984-85).
4. A. R. Mansour, A. B. Shahalam, and M. Sotari, "Parametric Sensitivity Study of Multicomponent Adsorption in Agitated Tanks," *Ibid.*, 20(1), 1 (1985).
5. A. R. Mansour, A. B. Shahalam, D. U. Von Rosenberg, and N. D. Sylvester, "A General Nonequilibrium Multicomponent Adsorption Model: Numerical Solution," *Ibid.*, 19(8&9), 479 (1984).
6. A. R. Mansour, "Comparison of Equilibrium and Nonequilibrium Models in the Simulation of Multicomponent Processes," *Ibid.*, 22(4), 1219 (1987).
7. A. R. Mansour, "Computer Prediction of Multicomponent Sorption with Variable Initial Concentrations Using a Complex Model," Submitted for Publication, 1988.
8. M. W. Balzli, A. I. Liapis, and D. W. T. Rippin, "Application of Mathematical Modelling to the Simulation of Multicomponent Adsorption in Activated Carbon Columns," *Trans. Inst. Chem. Eng.*, 56, 145 (1978).
9. M. W. Belzli, "Ensatz von Aktivkable zur Reingung eines Mehrkomponenten-Chemical bwassers," PhD Dissertation, Eidgenossische Technische Hochschule Zurich, 1977.
10. J. S. C. Hsieh, R. M. Turian, and Chi Tien, "Multicomponent Liquid Phase Adsorption in Fixed Beds," *AIChE J.*, 23, 263 (1977).
11. J. Reis, E. N. Lightfoot, P. T. Noble, and A. S. Chiang, "Chromatography in a Bed of Spheres," *Sep. Sci. Technol.*, 14(5), 367 (1979).
12. D. J. Wilson, "Theory of Adsorption by Activated Carbon. II. Continuous Flow Columns," *Ibid.*, 14(5), 415 (1979).
13. V. D. Dang, "Axial Diffusion and Selectivity in a Plug Flow Reactor," *Ind. Eng. Chem., Fundam.*, 23, 326 (1984).
14. J. C. Wang and W. E. Stewart, "New Description of Dispersion in Flow through Tubes: Convolution and Collocation Methods," *AIChE J.*, 29(3), 493 (1983).
15. E. J. Farkas, and E. Byleveld, "Longitudinal Dispersion at Low Liquid Flow Rates in Fixed Beds with Application to Elution in Demineralization by Ion Exchange," *Can. J. Chem. Eng.*, 57, 527 (1979).
16. D. Ozil and L. Bonnetain, "Dynamical Adsorption in Fixed Beds," *Chem. Eng. Sci.*, 32, 303 (1977).
17. N. S. Raghavan and D. M. Ruthven, "Numerical Simulation of a Fixed-Bed Adsorption Column by the Method of Orthogonal Collocation," *AIChE J.*, 29(6), 922 (1983).
18. N. Wakao and T. Funazkri, "Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Mass Transfer Coefficients in Packed Beds," *Chem. Eng. Sci.*, 33, 1375 (1978).
19. M. Crine, J. M. Asua, and G. L. L'Homme, "Axial Dispersion Processes in Liquid Trickle Flow through Packed Beds," *Chem. Eng. J.*, 25, 183 (1982).
20. A. P. Coppola and M. D. Levan, "Adsorption with Axial Diffusion in Deep Beds," *Chem. Eng. Sci.*, 36, 967 (1981).

21. A. Rasmuson and I. Neretniekes, "Exact Solution of a Model for Diffusion in Particles and Longitudinal Dispersion in Packed Beds," *AIChE J.*, 26(4), 686 (1980).
22. J. Szekely, J. W. Evans, and H. Y. Sohn, *Gas-Solid Reactions*, Academic, New York, 1976, pp. 263-264.
23. E. Sung, C. D. Han, and H. K. Rhee, "Optimal Design of Multistage Adsorption-Bed Systems," *AIChE J.*, 25(1), 87 (1979).
24. D. M. Ruthven, "The Axial Dispersed Plug Flow Model for Continuous Counter-Current Adsorbers," *Can. J. Chem. Eng.*, 61, 88 (1983).
25. G. Langer, A. Roethe, K. P. Roethe, and D. Geblin, "Heat and Mass Transfer in Packed Beds—III, Axial Mass Dispersion," *Int. J. Heat Mass Transfer*, 21, 751 (1978).
26. K. A. Wilde, *Multicomponent Adsorption Column Parameter Studies*, Presented at 17th ACS Meeting, Miami, Florida, September 1978.
27. A. Satter, Y. M. Shum, W. T. Adams, and L. A. Davis, "Chemical Transport in Porous Media With Dispersion and Rate Controlled Adsorption," *Soc. Pet. Eng. J.*, p. 129 (June 1980).
28. J. Loureiro, C. Costa, and A. Rodrigues, "Propagation of Concentration Waves in Fixed Bed Adsorptive Reactors," *Chem. Eng. J.*, 27, 135 (1983).
29. V. I. Maron and L. S. Kleinman, "Longitudinal Diffusion of Solid Particle Admixture in a Flow through a Tube," *Int. J. Multiphase Flow*, 10(5), 571 (1984).
30. S. P. Gupta and R. A. Greekorn, "Dispersion during Flow in Porous Media with Bilinear Adsorption," *Water Resour. Res.*, 9(5), 1357 (1973).
31. C. F. Gottschlich, "Axial Dispersion in a Packed Bed," *AIChE J.*, 9(1), 88 (1963).
32. J. J. van Deemter, F. J. Zuiderweg, and A. Klinkenberg, "Longitudinal Diffusion and Resistance to Mass Transfer as Causes of Nonideality in Chromatography," *Chem. Eng. Sci.*, 5, 271 (1956).
33. W. Fritz, W. Merk, and E. U. Schlunder, "Competitive Adsorption of Two Dissolved Organics onto Activated Carbon," *Ibid.*, 36, 731 (1981).
34. W. Fritz and E. U. Schlunder, "Simultaneous Adsorption Equilibria of Organic Solutes in Dilute Aqueous Solutions on Activated Carbon," *Ibid.*, 29, 279 (1974).
35. D. U. von Rosenberg, *Methods for the Numerical Solution of Partial Differential Equations*, Farrar, Tulsa, Oklahoma, 1977.
36. B. Carnahan, H. A. Luther, and J. O. Wilkies, *Applied Numerical Methods*, Wiley, New York, 1969.

Received by editor October 3, 1988