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The Simulation of Multicomponent Sorption Processes
with Axial Diffusion

AWAD R. MANSOUR

CHEMICAL ENGINEERING DEPARTMENT
JORDAN UNIVERSITY OF SCIENCE & TECHNOLOGY
IRBID, JORDAN

Abstract

A generalized complex model has been developed to numerically simulate
multicomponent adsorption kinetics of binary and ternary systems. The model
takes into account fluid resistance, internal and external diffusion resistances
with axial diffusion, and a highly nonlinear equilibrium isotherm. Excellent
agreement with previously published experimental data with and without axial
diffusion has been obtained. The general computer program developed in this
study can be accurately used for any number of components in any complex
multicomponent sorption studies.

INTRODUCTION

Multicomponent adsorption onto activated carbon is finding increas-
ing application in the purification treatment of domestic and industrial
water and wastewater. The prediction of the breadth and shape of
breakthrough curves is of fundamental importance in the engineering
design of fixed-bed adsorption systems. For the design of efficient
adsorbers it is desirable to have a background of theory in order to know
how various factors influence the sharpness of separation. Among these
factors is axial dispersion, which plays an important role in many
processes of chemical reaction and separation. The effect of axial
dispersion on the performance of liquid-phase adsorption and other
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mass transfer processes has been extensively investigated for many years
(I-32). Most investigators (I) ignored the dispersion effect in their
theoretical works and in the analysis of experimental results. Other
reseasrchers (16, 18, 20) showed that neglecting dispersion effects may
cause considerable errors in the evaluation of transfer coefficients at low
flow rates, particularly when the fluid is a gas.

In the present work a comprehensive mathematical model considering
all the significant external and internal diffusion and mass transfer
processes as well as the axial dispersion using a highly nonlinear
equilibrium isotherm is numerically solved for binary and ternary
systems and compared to previously published experimental and
theoretical works.

MATHEMATICAL GENERAL MODEL
The mathematical model describing solutes distribution consists of
three parts as follows: 1) sorbent phase, 2) liquid-stream phase, 3)
equilibrium isotherms.

Sorbent-Phase Governing Equations

For any solute i the pore and surface concentrations are described by
Egs. (1) and (2) respectively:

1 o oC oC
ﬁprfEE(rZ—arﬂ’>—K|f(C§f Ci) =¢, —arL (1)
1 0 (,0C, GC,,
Dsi—'z_a_(r ar ) +K|:(C sl)_ (2)
fori=1,2,3,...,n, where n is the number of solutes. (The symbols are

defined in the Symbols section.) The initial and boundary conditions
needed for Egs. (1) and (2) are:

atr=0,C,=C,;=0forall0<r<R
atr =0,0C,/0r = 0 and 0C,;/0r = 0 foranyt > 0

ac,
=R, ¢, D, —7* ar L= Ki(Cyu — Cp)
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and
6C,/0r = O foranyr > 0

where C,; is the concentration of solute in the bulk fluid.

Liquid-Stream Phase Governing Equations

The concentration distribution of solute i in the liquid stream flowing
inside the fixed-bed is described by the following partial differential
equation:

aCd,' (l - 85)(_35&) _ Vacd,- = aZCd,-
at + €5 R (Cdi Cpi)r=R + 8Bax DLI' axz (3)

The initial and boundary conditions of Eg. (3) are given by

C,tx)=0atr<0for0<x <z

_V”Cm(t) = chi(trx) - Dy, 9Cy atx =0,>0
88 83 ax

9C,;

=0atx=12,t>0
o atx =z

Equilibrium isotherms

For each solute i, the general nonlinear equilibrium isotherm is
described by the following equation (34):

wCol®
Cy= —t = f(Cp. Cpar .. Cpr) )

¢ + Z a,-jCﬁ}i
i=l

The Langmuir and Freundlich and other known isotherms are special
cases of Eq. (4). This equation has been shown (8, 9) to satisfactorily fit
experimental data of two and three solute systems.

Equation (4) is used to couple Egs. (1) and (2) for each solute i through
the term K, (C¥ — C,).
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Since Cy = f(C,1,C,y, - . ., C,,), sorbent- and liquid-phase equations are
linked together through the term (C; — C,,),-r applied at the outer surface
of the sorbent particles.

NUMERICAL SOLUTION

An accurate stable scheme of backward-difference technique (35, 36)
has been successfully used (/) to solve the Eqs. (1)-(4) and is extended
here to include the axial diffusion term on the right-hand side of Eq. (3).
Details of the numerical solution are described elsewhere (2). The general
flow chart describing the algorithmic logic of the computer program of
the complex model is shown in Fig. 1.

RESULTS AND DISCUSSIONS

The purpose of this paper is to present a numerical solution of a
generalized multicomponent adsorption model and to study the effect of
axial diffusion on the performance of fixed-bed adsorbers.

Results for the Two-Component System

The values of parameters for this system were also experimentally used
by Balzli (9) where butanol is taken as Component 1, and r-amyl alcohol
as Component 2. These values are given in Table 1.

As shown in Fig. 2, our findings indicate that axial dispersion does not
contribute significantly to the shapes of the breakthrough curves for the
two-component system. These results are in agreement with those
obtained by many investigators in recent works (12, 15, 20, 22, 26).

For z > particle diameter and Pe > 1, and Re > 10, it has been shown
(15, 22) that axial dispersion is unlikely to be significant, since the axial
diffusive term in the mass balance equation (Eq. 3) is much less than the
convective term. Farkas and Byleveld (/5) found by experiment that axial
dispersion is insignificant even when Re < 10 and Re is in the range of
0.02 to 0.22. In the present work, the values of Re and Pe are, respectively,
about 2 to 0.3. Moreover, the findings of Farkas and Byleveld (15) and
Wilson (12) indicate that axial dispersion does not contribute signifi-
cantly to the shapes of the breakthrough curves.
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FI1G. 1. Flow chart for complex model.
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TABLE 1
Values of Binary System Parameters
Height of adsorber, z, cm 41.0
Radius of carbon particle, R, cm 0.05
Porosity of particles, ¢, fraction 0.94
Voidage of bed, eg, fraction 045
Bulk velocity, V., cm/s 0.139
Initial concentration, Cp,, g/cm?:
Component 1 0.001
Component 2 0.001015
Mass transfer coefficient, Kz, cm/s:
Component 1 2115 % 1073
Component 2 1.68 X 1073
Adsorption rate constant, K;, s™":
Component 1 5333 x 1074
Component 2 4917 % 1074
Pore diffusion coefficient, Dy, cm?/s:
Component 1 7.40 X 10-¢
Component 2 13.03 X 107
Surface diffusion coefficient, Dy, cm?/s:
Component 1 125 X 1077
Component 2 22%x 1077
Axial diffusion coefficient, Dy;, cm?/s:
Component 1 0.04
Component 2 0.04

Equilibrium parameters for Component 1:

ap = 1.06 bm =1217 = 0

aj=1 b, =0626 b =0812 by;=0764
Equilibrium parameters for Component 2:

ax = 1.07 b20= 1.254 C2=0

a) = 1 ay = 0.045 b2| = 0.906 b22 = .634

From Fig. 2, for a 41-cm adsorber, it is noted that the results with axial
diffusion is a little bit closer to the experimental data than the results
without axial diffusion. This difference in results is not noted in the
longer adsorber (82 cm) as shown in Fig. 4 for the ternary system.

Results for the Thee-Component System

The parameters used in this model are shown in Table 2. Phenol is

used here as Component 3.

As shown in Figs. 3 and 4 for the three-component system in both 41
and 82 cm adsorbers, it is noted that including axial diffusion in the
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FiG. 2. Effect of axial diffusion on the simultaneous adsorption of butanol and t-amyl
alcohol.

complex model does not affect the shape of the breakthrough curves for
all components. It is also noted that the effect of axial diffusion is less for
the longer adsorber, and this result has been reported in a recent paper by
Raghavan and Ruthven (/7), who showed that the effect of axial diffusion
is minimal except when the bed is very short (less than 20 particle
diameters), and in our study this ratio is 820. Therefore the neglect of
axial dispersion is reasonable for long adsorbers.

CONCLUSIONS

It is concluded that axial dispersion has a minimal effect on the shape
and sharpness of breakthrough curves in multicomponent sorption
processes, and this effect becomes less for relatively long fixed-bed
adsorbers. Hence, axial dispersion can be neglected in the simulation
and the design of multicomponent adsorbers.

SYMBOLS

Qy, Q5 coefficients in Eq. (4)
b b;  coefficients in Eq. (4)



12: 54 25 January 2011

Downl oaded At:

1054 MANSOUR
TABLE 2
Values of Parameters for the Ternary System
Height of adsorbers, z, cm: 41.0, 820
Initial concentration, Cy;, g/cm®:
Component 1, Cy, 9.150 X 1074
Component 2, Cg, 9.120 x 107¢
Component 3, Cp; 9970 x 1074
Mass transfer coefficients, K4, cm/s:
Component 1, Ky 2120 x 1073
Component 2, Ky, 1950 x 1073
Component 3, Ky 2170 X 1073
Adsorption rate constants, Ky;, s~
Component 1 5333x 107
Component 2 4917 x 107
Component 3 3278 x 1074
Pore diffusion coefficient, D,,;, cm2.
Component 1 74% 1076
Component 2 13.03 X 10~¢
Component 3 192 % 1076
Surface diffusion coefficient, D;, cm?%s:
Component 1 125 x 1077
Component 2 220 % 1077
Component 3 320 x 1077
Axial diffusion coefficient, Dy;, cm?/s:
Component 1 0.04
Component 2 0.04
Component 3 0.04

Parameters of the equilibrium isotherm:

ap = 1.05 apy = 1.00 ap = 1.44 a]3=0.53 | =0
bio=1134 b, =073 b, =079  b,; = 0467
ay = 1.09 ay = 0.52 a» = 1.00 az = 0.30 = 0
by =1182 by =0884 by =081 by =0536
ay = 0.79 ay = 1.07 ay = 0.79 az = 1.00 ey = 0
b30 =0224 b_'“ = 0.286 b32 = 0235 b33 = 0.002
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FIG. 3. Effect of axial diffusion on the simultaneous adsorption of butanol, t-amyl alcohol,
and phenol in a 41-cm bed.
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FIG. 4. Effect of axial diffusion on the simultaneous adsorption of butanol, t-amyl aicohol,
and phenol in a 82-cm bed.
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concentration of solute i in fluid phase of the bed (g/cm’)
value of C, at the entrance of bed

concentration of solute i in pore fluid phase (g/cm?)
concentration of solute 7 in solid phase (g/cm’)
axial diffusion coefficient of solute i (cm?/s)

pore diffusion coefficient of solute i (cm?/s)

particle diameter (cm)

surface diffusion coefficient of solute i (cm?/s)

mass transfer coefficient of solute i (cm/s)
adsorption rate constant of solute i (s™")

Peclet number = 4,V/D, (dimensionless)

radial distance in particle (cm)

particle radius (cm)

Reynolds number = pVd,/u

time (s)

fluid velocity (cm/s)

distance along adsorber (cm)

length of adsorber (cm)

Greek Letters

p fluid density (g/cm’)

u fluid viscosity (g/cm - s)

€5 bed void fraction (dimensionless)
€p particle porosity (dimensionless)
Superscripts

* equilibrium value

Subscripts

i
J

p
s

integer value
integer value
pore
solid
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